**Purpose:** In this problem set, you will connect two trigonometric functions, sine and cosine, to points on circles.

A point on a circle is determined by the angle  $\theta$  (measured from the positive *x*-axis) and the radius of the circle.

To better understand the point on the circle, we will use something called a *reference triangle*. Note: We ALWAYS use the *x*-axis (positive or negative) for a reference triangle, never the *y*-axis.

As the radius changes, the ratio of the the side lengths of the triangles will stay the same so we give the functions that record these ratios special names.

- The sine function is  $\sin(\theta) =$
- The cosine function is  $\cos(\theta) =$

1. Draw two circles with different radii.

(a) When  $\theta = \frac{\pi}{2}$ , how big is *y* (the height of the reference triangle) relative to *r* (the hypotenuse of the reference triangle)?

(b) How do your circles and ratios compare to your neighbor's?

- (c) What is  $\sin\left(\frac{\pi}{2}\right)$ ?
- (d) What is  $\cos\left(\frac{\pi}{2}\right)$ ?

2. Draw the unit circle below. For each of the following angles, sketch the corresponding ray and write the angle in degrees. Then find  $sin(\theta)$  and  $cos(\theta)$ .

(a) 
$$\theta = \pi$$
  
 $\sin(\pi) = \cos(\pi) =$   
(b)  $\theta = \frac{3\pi}{2}$   
 $\sin\left(\frac{3\pi}{2}\right) = \cos\left(\frac{3\pi}{2}\right) =$   
(c)  $\theta = 0$   
 $\sin(0) = \cos(0) =$   
(d)  $\theta = \frac{\pi}{4}$   
 $\sin\left(\frac{\pi}{4}\right) = \cos\left(\frac{\pi}{4}\right) =$   
(e)  $\theta = \frac{\pi}{3}$   
 $\sin\left(\frac{\pi}{3}\right) = \cos\left(\frac{\pi}{3}\right) =$   
(f)  $\theta = \frac{\pi}{6}$   
 $\sin\left(\frac{\pi}{6}\right) = \cos\left(\frac{\pi}{6}\right) =$ 

## The Unit Circle

