\qquad

Purpose: In this problem set, you will connect two trigonometric functions, sine and cosine, to points on circles.

A point on a circle is determined by the angle θ (measured from the positive x-axis) and the radius of the circle.

To better understand the point on the circle, we will use something called a reference triangle. Note: We ALWAYS use the x-axis (positive or negative) for a reference triangle, never the y-axis.

As the radius changes, the ratio of the the side lengths of the triangles will stay the same so we give the functions that record these ratios special names.

- The sine function is $\sin (\theta)=$
- The cosine function is $\cos (\theta)=$

1. Draw two circles with different radii.

(a) When $\theta=\frac{\pi}{2}$, how big is y (the height of the reference triangle) relative to r (the hypotenuse of the reference triangle)?
(b) How do your circles and ratios compare to your neighbor's?
(c) What is $\sin \left(\frac{\pi}{2}\right)$?
(d) What is $\cos \left(\frac{\pi}{2}\right)$?
2. Draw the unit circle below. For each of the following angles, sketch the corresponding ray and write the angle in degrees. Then find $\sin (\theta)$ and $\cos (\theta)$.
(a) $\theta=\pi$

$$
\sin (\pi)=\quad \cos (\pi)=
$$

(b) $\theta=\frac{3 \pi}{2}$

$$
\sin \left(\frac{3 \pi}{2}\right)=
$$

$$
\cos \left(\frac{3 \pi}{2}\right)=
$$

(c) $\theta=0$

$$
\sin (0)=\quad \cos (0)=
$$

(d) $\theta=\frac{\pi}{4}$

$$
\sin \left(\frac{\pi}{4}\right)=
$$

$$
\cos \left(\frac{\pi}{4}\right)=
$$

(e) $\theta=\frac{\pi}{3}$

$$
\sin \left(\frac{\pi}{3}\right)=
$$

$$
\cos \left(\frac{\pi}{3}\right)=
$$

(f) $\theta=\frac{\pi}{6}$

$$
\sin \left(\frac{\pi}{6}\right)=\quad \cos \left(\frac{\pi}{6}\right)=
$$

The Unit Circle

